Machine-learned cluster identification in high-dimensional data

نویسندگان

  • Alfred Ultsch
  • Jörn Lötsch
چکیده

BACKGROUND High-dimensional biomedical data are frequently clustered to identify subgroup structures pointing at distinct disease subtypes. It is crucial that the used cluster algorithm works correctly. However, by imposing a predefined shape on the clusters, classical algorithms occasionally suggest a cluster structure in homogenously distributed data or assign data points to incorrect clusters. We analyzed whether this can be avoided by using emergent self-organizing feature maps (ESOM). METHODS Data sets with different degrees of complexity were submitted to ESOM analysis with large numbers of neurons, using an interactive R-based bioinformatics tool. On top of the trained ESOM the distance structure in the high dimensional feature space was visualized in the form of a so-called U-matrix. Clustering results were compared with those provided by classical common cluster algorithms including single linkage, Ward and k-means. RESULTS Ward clustering imposed cluster structures on cluster-less "golf ball", "cuboid" and "S-shaped" data sets that contained no structure at all (random data). Ward clustering also imposed structures on permuted real world data sets. By contrast, the ESOM/U-matrix approach correctly found that these data contain no cluster structure. However, ESOM/U-matrix was correct in identifying clusters in biomedical data truly containing subgroups. It was always correct in cluster structure identification in further canonical artificial data. Using intentionally simple data sets, it is shown that popular clustering algorithms typically used for biomedical data sets may fail to cluster data correctly, suggesting that they are also likely to perform erroneously on high dimensional biomedical data. CONCLUSIONS The present analyses emphasized that generally established classical hierarchical clustering algorithms carry a considerable tendency to produce erroneous results. By contrast, unsupervised machine-learned analysis of cluster structures, applied using the ESOM/U-matrix method, is a viable, unbiased method to identify true clusters in the high-dimensional space of complex data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

A Single-Pass Algorithm for Efficiently Recovering Sparse Cluster Centers of High-dimensional Data

Learning a statistical model for high-dimensional data is an important topic in machine learning. Although this problem has been well studied in the supervised setting, little is known about its unsupervised counterpart. In this work, we focus on the problem of clustering high-dimensional data with sparse centers. In particular, we address the following open question in unsupervised learning: “...

متن کامل

Learning transformations for clustering and classification

A low-rank transformation learning framework for subspace clustering and classification is here proposed. Many high-dimensional data, such as face images and motion sequences, approximately lie in a union of low-dimensional subspaces. The corresponding subspace clustering problem has been extensively studied in the literature to partition such highdimensional data into clusters corresponding to...

متن کامل

Machine-learned pattern identification in olfactory subtest results

The human sense of smell is often analyzed as being composed of three main components comprising olfactory threshold, odor discrimination and the ability to identify odors. A relevant distinction of the three components and their differential changes in distinct disorders remains a research focus. The present data-driven analysis aimed at establishing a cluster structure in the pattern of olfac...

متن کامل

An Infinite Mixture Model of Generalized Inverted Dirichlet Distributions for High-Dimensional Positive Data Modeling

We propose an infinite mixture model for the clustering of positive data. The proposed model is based on the generalized inverted Dirichlet distribution which has a more general covariance structure than the inverted Dirichlet that has been widely used recently in several machine learning and data mining applications. The proposed mixture is developed in an elegant way that allows simultaneous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2017